Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 186(1): 452-468, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33576789

RESUMO

Unilateral incompatibility (UI) manifests as pollen rejection in the pistil, typically when self-incompatible (SI) species are pollinated by self-compatible (SC) relatives. In the Solanaceae, UI occurs when pollen lack resistance to stylar S-RNases, but other, S-RNase-independent mechanisms exist. Pistils of the wild tomato Solanum pennellii LA0716 (SC) lack S-RNase yet reject cultivated tomato (Solanum lycopersicum, SC) pollen. In this cross, UI results from low pollen expression of a farnesyl pyrophosphate synthase gene (FPS2) in S. lycopersicum. Using pollen from fps2-/- loss-of-function mutants in S. pennellii, we identified a pistil factor locus, ui3.1, required for FPS2-based pollen rejection. We mapped ui3.1 to an interval containing 108 genes situated on the IL 3-3 introgression. This region includes a cluster of ornithine decarboxylase (ODC2) genes, with four copies in S. pennellii, versus one in S. lycopersicum. Expression of ODC2 transcript was 1,034-fold higher in S. pennellii than in S. lycopersicum styles. Pistils of odc2-/- knockout mutants in IL 3-3 or S. pennellii fail to reject fps2 pollen and abolish transmission ratio distortion (TRD) associated with FPS2. Pollen of S. lycopersicum express low levels of FPS2 and are compatible on IL 3-3 pistils, but incompatible on IL 12-3 × IL 3-3 hybrids, which express both ODC2 and ui12.1, a locus thought to encode the SI proteins HT-A and HT-B. TRD observed in F2 IL 12-3 × IL 3-3 points to additional ODC2-interacting pollen factors on both chromosomes. Thus, ODC2 genes contribute to S-RNase independent UI and interact genetically with ui12.1 to strengthen pollen rejection.


Assuntos
Ornitina Descarboxilase/genética , Pólen/fisiologia , Ribonucleases/genética , Solanum/fisiologia , Genes de Plantas , Ornitina Descarboxilase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ribonucleases/metabolismo , Solanum/enzimologia
2.
Plant J ; 100(4): 836-850, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31323151

RESUMO

The wild tomato relative Solanum sitiens is a xerophyte endemic to the Atacama Desert of Chile and a potential source of genes for tolerance to drought, salinity and low-temperature stresses. However, until recently, strong breeding barriers prevented its hybridization and introgression with cultivated tomato, Solanum lycopersicum L. We overcame these barriers using embryo rescue, bridging lines and allopolyploid hybrids, and synthesized a library of introgression lines (ILs) that captures the genome of S. sitiens in the background of cultivated tomato. The IL library consists of 56 overlapping introgressions that together represent about 93% of the S. sitiens genome: 65% in homozygous and 28% in heterozygous (segregating) ILs. The breakpoints of each segment and the gaps in genome coverage were mapped by single nucleotide polymorphism (SNP) genotyping using the SolCAP SNP array. Marker-assisted selection was used to backcross selected introgressions into tomato, to recover a uniform genetic background, to isolate recombinant sub-lines with shorter introgressions and to select homozygous genotypes. Each IL contains a single S. sitiens chromosome segment, defined by markers, in the genetic background of cv. NC 84173, a fresh market inbred line. Large differences were observed between the lines for both qualitative and quantitative morphological traits, suggesting that the ILs contain highly divergent allelic variation. Several loci contributing to unilateral incompatibility or hybrid necrosis were mapped with the lines. This IL population will facilitate studies of the S. sitiens genome and expands the range of genetic variation available for tomato breeding and research.


Assuntos
Introgressão Genética , Solanum lycopersicum/genética , Solanum/genética , Clima Desértico , Flores/fisiologia , Frutas/fisiologia , Biblioteca Gênica , Genoma de Planta , Solanum lycopersicum/fisiologia , Melhoramento Vegetal , Ploidias , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Autoincompatibilidade em Angiospermas/genética
3.
Plant J ; 93(3): 417-430, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29206320

RESUMO

Multiple independent and overlapping pollen rejection pathways contribute to unilateral interspecific incompatibility (UI). In crosses between tomato species, pollen rejection usually occurs when the female parent is self-incompatible (SI) and the male parent self-compatible (SC) (the 'SI × SC rule'). Additional, as yet unknown, UI mechanisms are independent of self-incompatibility and contribute to UI between SC species or populations. We identified a major quantitative trait locus on chromosome 10 (ui10.1) which affects pollen-side UI responses in crosses between cultivated tomato, Solanum lycopersicum, and Solanum pennelliiLA0716, both of which are SC and lack S-RNase, the pistil determinant of S-specificity in Solanaceae. Here we show that ui10.1 is a farnesyl pyrophosphate synthase gene (FPS2) expressed in pollen. Expression is about 18-fold higher in pollen of S. pennellii than in S. lycopersicum. Pollen with the hypomorphic S. lycopersicum allele is selectively eliminated on pistils of the F1 hybrid, leading to transmission ratio distortion in the F2 progeny. CRISPR/Cas9-generated knockout mutants (fps2) in S. pennelliiLA0716 are self-sterile due to pollen rejection, but mutant pollen is fully functional on pistils of S. lycopersicum. F2 progeny of S. lycopersicum × S. pennellii (fps2) show reversed transmission ratio distortion due to selective elimination of pollen bearing the knockout allele. Overexpression of FPS2 in S. lycopersicum pollen rescues the pollen elimination phenotype. FPS2-based pollen selectivity does not involve S-RNase and has not been previously linked to UI. Our results point to an entirely new mechanism of interspecific pollen rejection in plants.


Assuntos
Geraniltranstransferase/genética , Proteínas de Plantas/genética , Pólen/genética , Autoincompatibilidade em Angiospermas/genética , Solanum lycopersicum/fisiologia , Mapeamento Cromossômico , Cromossomos de Plantas , Flores/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Geraniltranstransferase/metabolismo , Mutação com Perda de Função , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ribonucleases/genética , Ribonucleases/metabolismo
4.
Am J Bot ; 104(12): 1904-1919, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29212768

RESUMO

PREMISE OF THE STUDY: Self-incompatibility (SI) prevents self-fertilization and reduces inbreeding. While SI is common in plants, transitions to self-compatibility (SC) occur frequently. Little is known about the genetic changes and evolutionary steps underlying these shifts. METHODS: In the Solanaceae, SI is gametophytic, with specificity determined by S-RNases in the pistil and S-locus F-box proteins (SLFs) in pollen. We examined the role of two pollen factors, Cullin1 (CUL1) and SLF-23, in SI → SC transitions in wild tomato species from the Arcanum species group (Solanum arcanum, S. neorickii, and S. chmielewskii). Pollen compatibility was assessed on tester lines that reject pollen lacking functional SLF-23 or CUL1. Complementation tests, gene sequencing, and phylogenetic analyses were used to characterize both functional and nonfunctional alleles. KEY RESULTS: We found evidence for multiple independent SI → SC transitions. In S. arcanum and S. chmielewskii, SC is caused by loss of pistil S-RNase activity, while in S. neorickii SC is associated with expression of a functional SLF-23 that recognizes the S9 type S-RNase expressed in its pistils. Interestingly, we found identical deletion mutations in CUL1 exon 7 of S. chmielewskii as previously seen in S. habrochaites. CONCLUSIONS: Mating system transitions in the Arcanum group have occurred via both pistil loss-of-function and pollen gain-of-function SC mutations. Mutations common to S. chmielewskii and S. habrochaites must have arisen in a common ancestor, possibly to the entire tomato clade, then became fixed in different lineages after loss of pistil-side SI function.


Assuntos
Evolução Biológica , Pólen/genética , Pólen/fisiologia , Polinização/genética , Solanum/genética , Solanum/fisiologia , Demografia , Polinização/fisiologia
5.
Am J Bot ; 103(11): 1964-1978, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27864262

RESUMO

PREMISE OF THE STUDY: Interspecific reproductive barriers (IRBs) often prevent hybridization between closely related species in sympatry. In the tomato clade (Solanum section Lycopersicon), interspecific interactions between natural sympatric populations have not been evaluated previously. In this study, we assessed IRBs between members of the tomato clade from nine sympatric sites in Peru. METHODS: Coflowering was assessed at sympatric sites in Peru. Using previously collected seeds from sympatric sites in Peru, we evaluated premating prezygotic (floral morphology), postmating prezygotic (pollen-tube growth), and postzygotic barriers (fruit and seed development) between sympatric species in common gardens. Pollen-tube growth and seed development were examined in reciprocal crosses between sympatric species. KEY RESULTS: We confirmed coflowering of sympatric species at five sites in Peru. We found three types of postmating prezygotic IRBs during pollen-pistil interactions: (1) unilateral pollen-tube rejection between pistils of self-incompatible species and pollen of self-compatible species; (2) potential conspecific pollen precedence in a cross between two self-incompatible species; and (3) failure of pollen tubes to target ovules. In addition, we found strong postzygotic IRBs that prevented normal seed development in 11 interspecific crosses, resulting in seed-like structures containing globular embryos and aborted endosperm and, in some cases, overgrown endothelium. Viable seed and F1 hybrid plants were recovered from three of 19 interspecific crosses. CONCLUSIONS: We have identified diverse prezygotic and postzygotic IRBs that would prevent hybridization between sympatric wild tomato species, but interspecific hybridization is possible in a few cases.


Assuntos
Solanum/fisiologia , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Geografia , Hibridização Genética , Peru , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/fisiologia , Polinização , Reprodução , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Autoincompatibilidade em Angiospermas , Solanum/genética , Solanum/crescimento & desenvolvimento , Simpatria
6.
Am J Bot ; 103(10): 1847-1861, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27793860

RESUMO

PREMISE OF THE STUDY: Self-incompatibility (SI) is a mechanism that prevents inbreeding in many plant species. The mutational breakdown of SI occurs frequently, yet relatively little is known about the evolutionary steps involved in the progressive loss of pistil and pollen SI function. METHODS: In Solanaceae, SI is the S-RNase-based gametophytic type. We used SI and SC populations of the wild tomato species Solanum habrochaites to study natural variation for two pollen SI factors: a Cullin1 (CUL1) protein and an S-locus F-box protein (SLF-23). Pollen compatibility was assessed on an allotriploid tester line encoding an S-RNase recognized by SLF-23. Both pollen factors are required for compatibility on this tester line. Complementation tests and gene sequencing were used to identify mutations in CUL1 or SLF-23. KEY RESULTS: We detected loss-of-function mutations in CUL1 and/or SLF-23 in SC populations collected near the northern and southern geographic margins of this taxon's natural range. Nonmarginal SC and all SI accessions expressed mostly functional alleles of these pollen factors. Comparison of the CUL1 sequences identified several shared deletion mutations present in both northern and southern margin SC accessions. CONCLUSIONS: Loss-of-function mutations in CUL1 and SLF-23 likely became fixed relatively late during SI to SC transitions, after loss of pistil SI function. Mutations in CUL1 establish unilateral incompatibility with SI populations and strengthen reproductive isolation. Point mutations common to northern and southern SC biotypes likely derive from shared ancestral variants found in more central SI populations.


Assuntos
Proteínas Culina/genética , Proteínas de Plantas/genética , Isolamento Reprodutivo , Autoincompatibilidade em Angiospermas , Solanum/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Proteínas Culina/química , Proteínas Culina/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Mutação , Filogenia , Dispersão Vegetal , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Solanum/genética
7.
Proc Natl Acad Sci U S A ; 112(14): 4417-22, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25831517

RESUMO

Unilateral interspecific incompatibility (UI) is a postpollination, prezygotic reproductive barrier that prevents hybridization between related species when the female parent is self-incompatible (SI) and the male parent is self-compatible (SC). In tomato and related Solanum species, two genes, ui1.1 and ui6.1, are required for pollen compatibility on pistils of SI species or hybrids. We previously showed that ui6.1 encodes a Cullin1 (CUL1) protein. Here we report that ui1.1 encodes an S-locus F-box (SLF) protein. The ui1.1 gene was mapped to a 0.43-cM, 43.2-Mbp interval at the S-locus on chromosome 1, but positional cloning was hampered by low recombination frequency. We hypothesized that ui1.1 encodes an SLF protein(s) that interacts with CUL1 and Skp1 proteins to form an SCF-type (Skp1, Cullin1, F-box) ubiquitin E3 ligase complex. We identified 23 SLF genes in the S. pennellii genome, of which 19 were also represented in cultivated tomato (S. lycopersicum). Data from recombination events, expression analysis, and sequence annotation highlighted 11 S. pennellii genes as candidates. Genetic transformations demonstrated that one of these, SpSLF-23, is sufficient for ui1.1 function. A survey of cultivated and wild tomato species identified SLF-23 orthologs in each of the SI species, but not in the SC species S. lycopersicum, S. cheesmaniae, and S. galapagense, pollen of which lacks ui1.1 function. These results demonstrate that pollen compatibility in UI is mediated by protein degradation through the ubiquitin-proteasome pathway, a mechanism related to that which controls pollen recognition in SI.


Assuntos
Proteínas F-Box/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Pólen/genética , Solanum lycopersicum/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Proteínas Culina/genética , Proteínas F-Box/metabolismo , Flores/genética , Perfilação da Expressão Gênica , Genes de Plantas , Genótipo , Solanum lycopersicum/metabolismo , Fenótipo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polinização
8.
Am J Bot ; 102(2): 302-11, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25667082

RESUMO

PREMISE OF THE STUDY: Interspecific reproductive barriers (IRBs) act to ensure species integrity by preventing hybridization. Previous studies on interspecific crosses in the tomato clade have focused on the success of fruit and seed set. The SI × SC rule (SI species × SC species crosses are incompatible, but the reciprocal crosses are compatible) often applies to interspecific crosses. Because SI systems in the Solanaceae affect pollen tube growth, we focused on this process in a comprehensive study of interspecific crosses in the tomato clade to test whether the SI × SC rule was always followed. METHODS: Pollen tube growth was assessed in reciprocal crosses between all 13 species of the tomato clade using fluorescence microscopy. KEY RESULTS: In crosses between SC and SI species, pollen tube growth follows the SI × SC rule: interspecific pollen tube rejection occurs when SI species are pollinated by SC species, but in the reciprocal crosses (SC × SI), pollen tubes reach ovaries. However, pollen tube rejection occurred in some crosses between pairs of SC species, demonstrating that a fully functional SI system is not necessary for pollen tube rejection in interspecific crosses. Further, gradations in the strength of both pistil and pollen IRBs were revealed in interspecific crosses using SC populations of generally SI species. CONCLUSION: The SI × SC rule explains many of the compatibility relations in the tomato clade, but exceptions occur with more recently evolved SC species and accessions, revealing differences in strength of both pistil and pollen IRBs.


Assuntos
Cruzamentos Genéticos , Flores , Hibridização Genética , Tubo Polínico , Polinização , Solanum lycopersicum/genética , Solanum/genética , Evolução Biológica , Frutas , Pólen , Tubo Polínico/crescimento & desenvolvimento , Reprodução , Solanaceae/genética
9.
Nat Genet ; 46(11): 1220-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25305757

RESUMO

The histories of crop domestication and breeding are recorded in genomes. Although tomato is a model species for plant biology and breeding, the nature of human selection that altered its genome remains largely unknown. Here we report a comprehensive analysis of tomato evolution based on the genome sequences of 360 accessions. We provide evidence that domestication and improvement focused on two independent sets of quantitative trait loci (QTLs), resulting in modern tomato fruit ∼100 times larger than its ancestor. Furthermore, we discovered a major genomic signature for modern processing tomatoes, identified the causative variants that confer pink fruit color and precisely visualized the linkage drag associated with wild introgressions. This study outlines the accomplishments as well as the costs of historical selection and provides molecular insights toward further improvement.


Assuntos
Cruzamento/história , Genoma de Planta/genética , Filogenia , Locos de Características Quantitativas/genética , Seleção Genética/genética , Solanum lycopersicum/genética , Sequência de Bases , Cruzamento/métodos , Mapeamento Cromossômico , Análise por Conglomerados , Genética Populacional , História Antiga , Funções Verossimilhança , Desequilíbrio de Ligação , Solanum lycopersicum/história , Modelos Genéticos , Dados de Sequência Molecular , Pigmentação/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
10.
Genetics ; 196(2): 439-42, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24240530

RESUMO

We previously isolated a pollen factor, ui6.1, which encodes a Cullin1 protein (CUL1) that functions in unilateral interspecific incompatibility (UI) in Solanum. Here we show that CUL1 is also required for pollen function in self-incompatibility (SI). We used RNA interference (RNAi) to reduce CUL1 expression in pollen of Solanum arcanum, a wild SI tomato relative. Hemizygous T0 plants showed little or no transmission of the transfer DNA (T-DNA) through pollen when crossed onto nontransgenic SI plants, indicating that CUL1-deficient pollen are selectively eliminated. When crossed onto a related self-compatible (SC) accession lacking active S-RNase, pollen transmission of the T-DNA followed Mendelian ratios. These results provide further evidence for functional overlap between SI and UI on the pollen side and suggest that CUL1 mutations will reinforce SI-to-SC transitions in natural populations only if preceded by loss of pistil S-RNase expression.


Assuntos
Proteínas Culina/genética , Regulação da Expressão Gênica de Plantas , Pólen/genética , Solanum/genética , Proteínas Culina/metabolismo , Flores/genética , Flores/metabolismo , Fenótipo , Pólen/metabolismo , Interferência de RNA , Solanum/metabolismo , Transformação Genética , Transgenes
11.
Funct Plant Biol ; 41(2): 119-132, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32480972

RESUMO

Field and greenhouse studies examined the effects of growth habit and chloroplast presence in leaf veins for their role in increasing agronomic water use efficiency and yields of California modern processing tomato (Solanum lycopersicum L.) cultivars. Five introgression lines (ILs), made with Solanum pennellii Cor. in the genetic background of cultivar M82, differ in genes that map to a region on Chromosome 5, including the SP5G gene (determinate vs. semideterminate (Det vs. SemiDet)) and the obv gene (presence (obscure) vs. absence (clear) of leaf vein chloroplasts (Obs vs. Clr)). The five ILs and M82 represented three of the four gene combinations (Det-Clr was unavailable). Det-Obs ILs had less leaf, stem and total aboveground biomass with earlier fruit set and ripening than SemiDet-Clr ILs. By harvest, total fruit biomass was not different among ILs. Photosynthetic rates and stomatal conductance were 4-7% and 13-26% higher, respectively, in Det-Obs ILs than SemiDet-Clr ILs. SemiDet-Obs ILs were intermediate for growth and gas exchange variables. The Det-Obs ILs had lower leaf N concentration and similar chlorophyll content per leaf area (but slightly higher per leaf mass) than SemiDet-Clr ILs. The Obs trait was associated with gains in leaf gas exchange-related traits. This study suggests that a more compact growth habit, less leaf biomass and higher C assimilation capacity per leaf area were relevant traits for the increased yields in cultivars with determinate growth. Developing new introgression libraries would contribute to understanding the multiple trait effects of desirable phenotypes.

12.
PLoS One ; 7(9): e45520, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029069

RESUMO

The effects of selection on genome variation were investigated and visualized in tomato using a high-density single nucleotide polymorphism (SNP) array. 7,720 SNPs were genotyped on a collection of 426 tomato accessions (410 inbreds and 16 hybrids) and over 97% of the markers were polymorphic in the entire collection. Principal component analysis (PCA) and pairwise estimates of F(st) supported that the inbred accessions represented seven sub-populations including processing, large-fruited fresh market, large-fruited vintage, cultivated cherry, landrace, wild cherry, and S. pimpinellifolium. Further divisions were found within both the contemporary processing and fresh market sub-populations. These sub-populations showed higher levels of genetic diversity relative to the vintage sub-population. The array provided a large number of polymorphic SNP markers across each sub-population, ranging from 3,159 in the vintage accessions to 6,234 in the cultivated cherry accessions. Visualization of minor allele frequency revealed regions of the genome that distinguished three representative sub-populations of cultivated tomato (processing, fresh market, and vintage), particularly on chromosomes 2, 4, 5, 6, and 11. The PCA loadings and F(st) outlier analysis between these three sub-populations identified a large number of candidate loci under positive selection on chromosomes 4, 5, and 11. The extent of linkage disequilibrium (LD) was examined within each chromosome for these sub-populations. LD decay varied between chromosomes and sub-populations, with large differences reflective of breeding history. For example, on chromosome 11, decay occurred over 0.8 cM for processing accessions and over 19.7 cM for fresh market accessions. The observed SNP variation and LD decay suggest that different patterns of genetic variation in cultivated tomato are due to introgression from wild species and selection for market specialization.


Assuntos
Cruzamento , Genótipo , Polimorfismo de Nucleotídeo Único , Solanum lycopersicum/genética , Mapeamento Cromossômico , Frequência do Gene , Genoma de Planta , Desequilíbrio de Ligação , Locos de Características Quantitativas
13.
Theor Appl Genet ; 123(8): 1445-58, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21870137

RESUMO

In plant breeding, the ability to manipulate genetic (meiotic) recombination would be beneficial for facilitating gene transfer from wild relatives of crop plants. The DNA mismatch repair (MMR) system helps maintain genetic integrity by correcting base mismatches that arise via DNA synthesis or damage, and antagonizes recombination between homeologous (divergent) DNA sequences. Previous studies have established that the genomes of cultivated tomato (Solanum lycopersicum) and the wild relative S. lycopersicoides are substantially diverged (homeologous) such that recombination between their chromosomes is strongly reduced. Here, we report the effects on homeologous recombination of suppressing endogenous MMR genes in S. lycopersicum via RNAi-induced silencing of SlMSH2 and SlMSH7 or overexpressing dominant negatives of Arabidopsis MSH2 (AtMSH2-DN) in an alien substitution line (SL-8) of S. lycopersicoides in tomato. We show that certain inhibitions of MMR (RNAi of SlMSH7, AtMSH2-DN) are associated with modest increases in homeologous recombination, ranging from 3.8 to 29.2% (average rate of 17.8%) compared to controls. Unexpectedly, only the AtMSH2-DN proteins but not RNAi-induced silencing of MSH2 was found to increase homeologous recombination. The ratio of single to double crossovers (SCO:DCO ratio) decreased by approximately 50% in progeny of the AtMSH2-DN parents. An increase in the frequency of heterozygous SL-8 plants was also observed in the progeny of the SlMSH7-RNAi parents. Our findings may contribute to acceleration of introgression in cultivated tomato.


Assuntos
Reparo de Erro de Pareamento de DNA/genética , Recombinação Homóloga/genética , Solanum lycopersicum/genética , Alelos , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Troca Genética , Regulação da Expressão Gênica de Plantas , Frequência do Gene/genética , Ligação Genética , Heterozigoto , Meiose/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transgenes/genética
14.
Sex Plant Reprod ; 24(3): 171-87, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21076968

RESUMO

The tomato clade within the genus Solanum has numerous advantages for mechanistic studies of reproductive isolation. Its thirteen closely related species, along with four closely allied Solanum species, provide a defined group with diverse mating systems that display complex interspecific reproductive barriers. Several kinds of pre- and postzygotic barriers have already been identified within this clade. Well-developed genetic maps, introgression lines, interspecific bridging lines, and the newly available draft genome sequence of the domesticated tomato (Solanum lycopersicum) are valuable tools for the genetic analysis of interspecific reproductive barriers. The excellent chromosome morphology of these diploid species allows detailed cytological analysis of interspecific hybrids. Transgenic methodologies, well developed in the Solanaceae, allow the functional testing of candidate reproductive barrier genes as well as live imaging of pollen rejection events through the use of fluorescently tagged proteins. Proteomic and transcriptomics approaches are also providing new insights into the molecular nature of interspecific barriers. Recent progress toward understanding reproductive isolation mechanisms using these molecular and genetic tools is assessed in this review.


Assuntos
Flores/fisiologia , Especiação Genética , Polinização , Isolamento Reprodutivo , Solanum lycopersicum , Perfilação da Expressão Gênica , Especificidade da Espécie
15.
Genetics ; 185(3): 1069-80, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20439771

RESUMO

Unilateral incompatibility (UI) is a prezygotic reproductive barrier in plants that prevents fertilization by foreign (interspecific) pollen through the inhibition of pollen tube growth. Incompatibility occurs in one direction only, most often when the female is a self-incompatible species and the male is self-compatible (the "SI x SC rule"). Pistils of the wild tomato relative Solanum lycopersicoides (SI) reject pollen of cultivated tomato (S. lycopersicum, SC), but accept pollen of S. pennellii (SC accession). Expression of pistil-side UI is weakened in S. lycopersicum x S. lycopersicoides hybrids, as pollen tube rejection occurs lower in the style. Two gametophytic factors are sufficient for pollen compatibility on allotriploid hybrids: ui1.1 on chromosome 1 (near the S locus), and ui6.1 on chromosome 6. We report herein a fine-scale map of the ui6.1 region. Recombination around ui6.1 was suppressed in lines containing a short S. pennellii introgression, but less so in lines containing a longer introgression. More recombinants were obtained from female than male meioses. A high-resolution genetic map of this region delineated the location of ui6.1 to approximately 0.128 MU, or 160 kb. Identification of the underlying gene should elucidate the mechanism of interspecific pollen rejection and its relationship to self-incompatibility.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Células Germinativas/fisiologia , Pólen/fisiologia , Solanum lycopersicum/genética , Cruzamentos Genéticos , Recombinação Genética
16.
Ann Bot ; 105(4): 535-54, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20154348

RESUMO

BACKGROUND AND AIMS: Two closely related, wild tomato-like nightshade species, Solanum lycopersicoides and Solanum sitiens, inhabit a small area within the Atacama Desert region of Peru and Chile. Each species possesses unique traits, including abiotic and biotic stress tolerances, and can be hybridized with cultivated tomato. Conservation and utilization of these tomato relatives would benefit from an understanding of genetic diversity and relationships within and between populations. METHODS: Levels of genetic diversity and population genetic structure were investigated by genotyping representative accessions of each species with a set of simple sequence repeat (SSR) and allozyme markers. KEY RESULTS: As expected for self-incompatible species, populations of S. lycopersicoides and S. sitiens were relatively diverse, but contained less diversity than the wild tomato Solanum chilense, a related allogamous species native to this region. Populations of S. lycopersicoides were slightly more diverse than populations of S. sitiens according to SSRs, but the opposite trend was found with allozymes. A higher coefficient of inbreeding was noted in S. sitiens. A pattern of isolation by distance was evident in both species, consistent with the highly fragmented nature of the populations in situ. The populations of each taxon showed strong geographical structure, with evidence for three major groups, corresponding to the northern, central and southern elements of their respective distributions. CONCLUSIONS: This information should be useful for optimizing regeneration strategies, for sampling of the populations for genes of interest, and for guiding future in situ conservation efforts.


Assuntos
Variação Genética , Solanum lycopersicum/genética , Solanum/genética , Alelos , Argentina , Fluxo Gênico/genética , Frequência do Gene/genética , Genética Populacional , Geografia , Desequilíbrio de Ligação/genética , Repetições de Microssatélites/genética , Filogenia , Dinâmica Populacional
17.
Science ; 330(6012): 1827-30, 2010 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-21205670

RESUMO

Self-incompatibility (SI)--intraspecific pollen recognition systems that allow plants to avoid inbreeding--in the Solanaceae (the nightshade family) is controlled by a polymorphic S locus where "self" pollen is rejected on pistils with matching S alleles. In contrast, unilateral interspecific incompatibility (UI) prevents hybridization between related species, most commonly when the pollen donor is self-compatible (SC) and the recipient is SI. We observed that in Solanum, a pollen-expressed Cullin1 gene with high similarity to Petunia SI factors interacts genetically with a gene at or near the S locus to control UI. Cultivated tomato and related red- or orange-fruited species (all SC) exhibit the same loss-of-function mutation in this gene, whereas the green-fruited species (mostly SI) contain a functional allele; hence, similar biochemical mechanisms underlie the rejection of both "self" and interspecific pollen.


Assuntos
Proteínas Culina/genética , Genes de Plantas , Proteínas de Plantas/genética , Pólen/genética , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Solanum/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Cruzamentos Genéticos , Proteínas Culina/metabolismo , Flores/fisiologia , Hibridização Genética , Íntrons , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Pólen/fisiologia , Polinização , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , Deleção de Sequência , Solanum/fisiologia
18.
Genetica ; 137(3): 341-54, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19690966

RESUMO

DNA mismatch repair proteins play an essential role in maintaining genomic integrity during replication and genetic recombination. We successfully isolated a full length MSH2 and partial MSH7 cDNAs from tomato, based on sequence similarity between MutS and plant MSH homologues. Semi-quantitative RT-PCR reveals higher levels of mRNA expression of both genes in young leaves and floral buds. Genetic mapping placed MSH2 and MSH7 on chromosomes 6 and 7, respectively, and indicates that these genes exist as single copies in the tomato genome. Analysis of protein sequences and phylogeny of the plant MSH gene family show that these proteins are evolutionarily conserved, and follow the classical model of asymmetric protein evolution. Genetic manipulation of the expression of these MSH genes in tomato will provide a potentially useful tool for modifying genetic recombination and hybrid fertility between wide crosses.


Assuntos
Reparo de Erro de Pareamento de DNA/genética , Proteínas de Plantas/genética , Análise de Sequência de DNA , Solanum lycopersicum/genética , Sequência de Aminoácidos , Mapeamento Cromossômico , Cromossomos de Plantas , Previsões , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
19.
Theor Appl Genet ; 119(2): 305-14, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19399472

RESUMO

Cultivated tomato (Solanum lycopersicum, syn. Lycopersicon esculentum) is susceptible to the necrotrophic ascomycete and causal agent of gray mold, Botrytis cinerea. Resistance to this fungal pathogen is elevated in wild relatives of tomato, including Solanum lycopersicoides. An introgression line population (IL) containing chromosomal segments of S. lycopersicoides within the background of tomato cv. VF36 was used to screen the genome for foliar resistance and susceptibility to B. cinerea. Based on this screen, putative quantitative trait loci (QTL) were identified, five for resistance and two for susceptibility. Four resistance QTL decreased infection frequency while the fifth reduced lesion diameter. One susceptibility QTL increased infection frequency whereas the other increased lesion diameter. Overlapping chromosomal segments provided strong evidence for partial resistance on chromosomes 1 and 9 and for elevated susceptibility on chromosome 11. Segregation analysis confirmed the major resistance QTL on the long arm of chromosome 1 and susceptibility on chromosome 11. Linkage of partial resistance to chromosome 9 could not be confirmed. The usefulness of these data for resistance breeding and for map-based cloning of foliar resistance to B. cinerea is discussed.


Assuntos
Botrytis/fisiologia , Imunidade Inata/genética , Mapeamento Físico do Cromossomo , Doenças das Plantas/imunologia , Locos de Características Quantitativas/genética , Solanum/genética , Solanum/microbiologia , Cruzamento , Segregação de Cromossomos , Cromossomos de Plantas/genética , Genes de Plantas , Marcadores Genéticos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia
20.
Theor Appl Genet ; 118(5): 831-47, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19099284

RESUMO

The two nightshades Solanum ochranthum and S. juglandifolium show genetic and morphological similarities to the tomatoes (Solanum sect. Lycopersicon), but are isolated from them by strong reproductive barriers. Their genetic relationships to tomato and other Solanum species were investigated using comparative genetic linkage maps obtained from an interspecific F(2) S. ochranthum x S. juglandifolium population. Sixty-six plants were screened using a total of 132 markers--CAPs, RFLPs and SSRs--previously mapped in tomato. Twelve linkage groups were identified, generally corresponding to the expected (syntenic) tomato chromosomes, with two exceptions. Chromosome 1 was composed of two linkage groups and chromosomes 8 and 12 were connected in one large linkage group, indicating a likely reciprocal translocation differentiating the two parental genomes. The total map length comprised 790 cM, representing a 42% reduction in recombination rate relative to the tomato reference map. Transmission ratio distortion affected one-third of the genome, with 13 putative TRD loci identified on 9 out of 12 chromosomes. Most regions were collinear with the tomato reference maps, including the long arm of chromosome 10, which is inverted relative to two other tomato-like nightshades, S. lycopersicoides and S. sitiens. The results support the status of S. ochranthum and S. juglandifolium as the nearest outgroup to the tomatoes and imply they are more closely related to cultivated tomato than predicted from crossing relationships, thus encouraging further attempts at hybridization and introgression between them.


Assuntos
Cromossomos de Plantas , Rearranjo Gênico , Ligação Genética , Solanum lycopersicum/genética , Solanum/genética , Sintenia , Mapeamento Cromossômico , Genótipo , Hibridização Genética , Solanum lycopersicum/classificação , Polimorfismo Genético , Sequências Repetitivas de Ácido Nucleico , Solanum/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...